Стоимость денег в наглядных примерах

Цена капитала на финансовом рынке определяется процентной ставкой. Она зависит от ряда факторов, основными из которых являются спрос и предложение денежных ресурсов на финансовом рынке. Процентная ставка используется для определения стоимости денег с учетом временного фактора. «Сегодняшние» деньги всегда будут ценнее «будущих» из-за риска неполучения последних. Рассмотрим виды займов и расчет нормы прибыли на инвестированный капитал.

Автор: Юpий Mуминoвич Бaxpамов, профессор, доктор экономических наук, пpeподаватель кафедры экономики и менеджмента Санкт-Петepбургского государственного политехнического университета (Инженерно-экономический инcтитут).

 

Для успешной работы предприятию необходимо иметь активы. Оборудование, транспортные средства, здания и сооружения являются материальными активами. Квалификация работников, технологии, торговые марки и патенты — нематериальные активы. Ценные бумаги (облигации, акции, кредиты финансовых институтов, арендные обязательства и т. п.) — это финансовые активы. Они обладают стоимостью, поскольку дают право претендовать на реальные активы предприятия.

Перед финансовым менеджером стоят два основных вопроса:

  • Куда вложить средства: сколько финансовых ресурсов должна инвестировать компания, в какие виды реальных активов и когда?
  • Где взять средства: где и как получить необходимые для инвестирования денежные средства?

 

Нахождение правильных ответов на эти вопросы позволит улучшить финансовое положение предприятия.

Одной из особенностей будущих денежных потоков, генерируемых инвестициями, является их распределение во времени. Это обусловливает возникновение серьезной проблемы — сопоставимости денежных потоков различных интервалов времени. Если в условиях инфляции вы сегодня дали взаймы 100 тыс. руб. сроком на один год, то через год обратно полученные 100 тыс. руб. будут иметь меньшую ценность.

Наряду с инфляционным обесцениванием денег существует еще как минимум три причины данного экономического феномена:

  • Во-первых, «сегодняшние» деньги всегда будут ценнее «будущих» из-за риска неполучения последних. Риск будет тем выше, чем больший временной интервал отделяет получателя денег от «будущего».
  • Во-вторых, потенциальный инвестор, располагающий сегодня денежными средствами, может их вложить, например, на депозитный счет в устойчивый банк и получить через год определенный доход. Поэтому владелец денег, выдавая их взаймы, не только подвергает себя риску их невозврата, но и несет реальные экономические потери в форме неполученных доходов от инвестирования.
  • В-третьих, при выдаче кредита у владельца денег заметно снижается его платежеспособность (ликвидность), поскольку любые обязательства, получаемые им взамен денег, имеют более низкую ликвидность, чем реальные деньги.

 

Процентные ставки можно рассматривать как норму выручки кредитора на финансовые активы. Разные виды финансовых активов имеют разные процентные ставки. В целом по рынку говорят о высокой или низкой средней процентной ставке. На изменение процентных ставок оказывают влияние соотношения спроса и предложения на ссудные фонды; состояние экономики страны; уровень цен на товары и услуги; темп инфляции; условия работы коммерческих банков.

При инвестировании свободных денежных ресурсов в инвестиционный проект или выдаче их в кредит инвестор планирует получить определенный доход в виде процентов, который он может получить в течение определенного периода времени. Общепринятым периодом времени при проведении финансовых операций является один год. Процентная ставка устанавливается в виде годовой ставки, подразумевающей однократное начисление процентов по истечении очередного года. Существует несколько схем начисления доходов:

  • на основе простых процентов;
  • на основе сложных процентов;
  • на основе непрерывно начисляемых сложных процентов.

 

Различие методов заключается в способах определения базовой суммы, с которой выплачивается доход.

При применении для расчета дохода по предоставленному кредиту с использованием схемы простых процентов базовая сумма остается постоянной. Предположим, что сумма выданных в кредит денежных средств равна Р руб. При ставке доходности r % и продолжительности срока кредитования n лет инвестор через n лет получит доход в сумме P*r*n. Общая сумма, которую получит инвестор через n лет, F, равна:

ЕЩЕ СМОТРИТЕ:  Контрольный список финансового директора

F = P + P * r * n = P * (1 + r * n).

При проведении кредитных операций на срок менее одного года платежи за кредит определяются из выражения:

F = P * (1 + (t / T) * r)

где r — годовая процентная ставка, в долях единицы; t — период, на который выдается кредит, дни (месяцы); Т — количество дней (месяцев) в году.

 

Пример 1

Компания «А» взяла кредит в сумме 1,8 млн. руб. сроком на 3 месяца под 12% в год. Начисление процентов производится по простой схеме. Определить сумму, которая должна быть возвращена банку по истечении кредитного срока.

F = 1,8 * (1 + (3 / 12) * 0,12 = 2,34 млн. руб.

Существует несколько методов расчета срока, на который банки выдают кредит. Согласно первому методу (практика английских банков), при расчете срока кредитования продолжительность года и число дней в месяце принимается равным фактическим календарным дням.

Второй метод (практика французских банков) предполагает количество дней в году равным 360, а число дней в месяцах соответствует числу календарных дней. При третьем методе (практика германских банков) число дней в году принимается равным 360 дням, а число дней в любом из 12 месяцев равным 30.

При расчете продолжительности кредитного периода принято день выдачи и день погашения кредита считать за один день.

 

Пример 2

Клиент получил кредит в сумме 300 тыс. руб. на срок с 1 июня по 30 сентября под 15% в год. Определить величину наращенной суммы при условии выдачи кредита под простые проценты при разных методах расчета срока кредитования:

а) принимается в расчет точное число дней кредита (год не високосный): срок кредитования с 1 июня по 30 октября: июнь — 30 дней, июль — 31 день, август — 31 день, сентябрь — 30 дней, итого — 122 дня; поскольку день выдачи и день погашения кредита принимаются равным одному дню, то срок кредитования в расчете будет равен 121 дню;

F = 300000 * (1 + (121 / 365) * 0,15) = 314918 руб.;

б) число дней в году равно 360, а число дней в месяцах — календарное:

F = 300000 * (1 + (121 / 360) * 0,15) = 315125 руб.;

в) число дней в году равно 360, а число дней в месяцах — 30: срок кредитования равен 119 дням (30*4 — 1):

F = 300000 * (1 + (119 / 360) * 0,15) = 315125 руб.

При использовании метода сложных процентов начисляемые проценты на кредит добавляются к базовой сумме, в результате чего она с каждым интервалом времени повышается.

 

Пример 3

Вы купили старый автомобиль марки «Honda» у своего приятеля Сидорова за 10 тыс. руб. Он достаточно любезен, чтобы дать вам один год для уплаты стоимости автомобиля с условием ежемесячного начисления процента по предоставленному кредиту, равного 1% в месяц. В конце первого месяца вы были бы должны выплатить 10000 * 1,01 = 10 100 руб.

Если вы не выплатите свой долг в конце первого месяца, то к концу второго месяца вы должны выплатить 10100 * 1,01 = 10 201 руб. В конце третьего месяца вы были бы должны Сидорову уже 10201 * 1,01 = 10 303 руб.

ЕЩЕ СМОТРИТЕ:  Решение задач и диагностика финансовой деятельности предприятия

При начислении сложных процентов к концу двенадцатого месяца вы должны будете выплатить Сидорову за автомобиль 10 000 * (1,01)12 = 11 268,25 руб.

 

Рассмотренный пример иллюстрирует метод определения суммы, которую необходимо выплатить за кредит (P), полученный под ставку процента r, через период времени t:

F=P*(1 +r)t.

Эта формула позволяет определить будущую стоимость вложенных сегодня средств через t лет.

Чем чаще за период начисляется доход, тем больше денег получит вкладчик при одной и той же ставке начисления годового дохода.

При процентной ставке 8% в год процентный фактор для 9 лет равен 1,9912. Это означает, что инвестированные сегодня 1 тыс. руб. под 8% годовых (почти) удвоятся через 9 лет. Это демонстрирует основу правила 72, в соответствии с которым при заданной процентной ставке r можно определить примерную продолжительность периода Т, в течение которого вложенные деньги удвоятся. Этот период можно определить из выражения:

T = 72 / r.

Например, при ставке r = 15% в год вложенные сегодня 1 тыс. руб. удвоятся (почти) через 4,8 года (72 / 15).

Более точный ответ дает правило 69, которое имеет следующий алгоритм расчета периода удвоения вложенных средств: Т = 0,35 + 69 / r.

Таким образом, более точное значение периода, в течение которого вложенные сегодня 1 тыс. руб. деньги удвоятся, равно:

T = 0,35 + 69 / 15 = 4,95 года.

Это правило позволяет определить процентную ставку, под которую необходимо вложить деньги, чтобы, например, через 4 года вложенные деньги удвоились: r = 69 / (4 — 0,35) = 18,9%.

 

Процентная ставка

Инвестиции в бизнес часто оцениваются посредством показателя норма прибыли. Займы можно рассматривать в качестве инвестиций, поскольку норма прибыли банка на его инвестиции равна процентной ставке, которую вы платите банку за полученный кредит. Таким образом, определение процентной ставки по полученному кредиту то же самое, что и определение нормы прибыли на инвестированный капитал.

Рассмотрим виды займов и расчет нормы прибыли на инвестированный капитал.

1. Вы занимаете определенную сумму денег и обязуетесь платить заемщику постоянно каждый год в течение нескончаемого периода времени равными суммами процентную ставку (бессрочный аннуитет). Для определения процентной ставки используем формулу r = A / P, где А — ежегодные выплаты процентов по займу, руб.; Р — сумма займа, руб.

 

Пример 4 (процентная ставка)

Компания «Лямбда» взяла кредит в сумме 1,5 млн. руб. с условием бессрочно каждый год выплачивать банку 105 тыс. руб. Определить процентную ставку для полученного займа.

А = 105000 руб.,

P = 1500000 руб., и тогда

r = 105000 / 1500000 = 0,07, или 7% в год.

2. Вы занимаете сумму денег P и обязуетесь через год (или менее одного года) выплатить большую сумму F в виде разового платежа. В этом случае процентная ставка определяется на основе формулы

F = P (1 + r). Откуда r = F / P — 1.

 

Пример 5 (процентная ставка)

Петров взял ссуду 100 тыс. руб. с условием возврата через год ссуды и процентов по ней в виде разового платежа 112 тыс. руб. Определить процентную ставку по займу. r = 112000 / 100000 — 1 = 0,12, или 12% в год.

ЕЩЕ СМОТРИТЕ:  Гибкое финансирование текущей деятельности компании

Если заем выдается на срок более 1 года (n лет), то процентная ставка определяется из выражения: r = (F / P)1/n — 1

 

Пример 6 (процентная ставка)

Сидорчук получил в Банке ссуду 120 тыс. руб. с условием возврата через 4 года 180 тыс. руб. Определить процентную ставку по ссуде.

F = 180000 руб., P = 120000 руб. и n = 4 года. Подставим эти значения в формулу:

r = (180000 / 120000)1/4 — 1 = 0,107, или 10,7% в год.

3. Вы занимаете сегодня деньги в сумме Р руб. сроком на n лет. В течение n лет кредитору ежегодно выплачиваете А руб. и в конце срока возвращаете Р руб. Процентная ставка по этому типу займа определяется на основе формулы r = A/P. Такой вид платежей характерен для корпоративной облигации, по которой эмитент ежегодно выплачивает определенную сумму денег в течение срока обращения облигации, и по завершении этого срока держателю облигации выплачивается ее номинальная стоимость.

 

Пример 7 (процентная ставка)

Компания «А» выпустила облигации номинальной стоимостью 10 тыс. руб. со сроком обращения 5 лет. В течение 5 лет держатель облигации ежегодно получает 950 руб. и в конце срока обращения — 10 тыс. руб. Определить процентную ставку займа.

А = 950 руб. в год,

Р = 10 000 руб.

r = A/P = 950 / 10000 = 0,095, или 9,5% в год.

 

Резюме

Цена капитала на финансовом рынке определяется процентной ставкой. Она зависит от ряда факторов, основными из которых являются спрос и предложение денежных ресурсов на финансовом рынке. Процентная ставка используется для определения стоимости денег с учетом временного фактора. Могут применяться простые, сложные и непрерывно начисляемые процентные ставки.

При сравнении разновременных денежных потоков особую роль играет понятие приведенная (текущая) стоимость денежных потоков. На практике применяются:

  • Множитель сложного процента, который выражает стоимость 1 руб., инвестированного сегодня под r % в год сроком на n лет. Будущая величина инвестированных сегодня S руб. определяется как произведение множителя сложного процента на сумму инвестиций S.
  • Множитель приведенной стоимости 1 руб. выражает сегодняшнюю стоимость 1 руб., который будет получен через n лет при процентной ставке, равной r % в год. Для определения приведенной величины S руб., получаемых через n лет, необходимо значение S умножить на множитель приведенной стоимости 1 руб.

 

При заключении кредитного соглашения с банком заемщик должен ориентироваться на минимум издержек, связанных с обслуживанием долга, поскольку разные схемы погашения кредита обусловливают разные издержки по амортизации основного долга.

 

Изучите стоимость денег во времени в курсе «Инвестиции»:

Инвестиции: практический интерактивный мультимедийный дистанционный курс
Инвестиции: практический интерактивный мультимедийный дистанционный курс

Также смотрите

2023 © НП ЦДО «Элитариум»
Копирование материалов запрещено.

Выберите курсы или программы